NCERT Solutions Class 7 Maths Chapter 12 – Download PDF

Scholarship Examination in India

Get here NCERT Solutions Class 7 Maths Chapter 12. These NCERT Solutions for Class 7 of Maths subject includes detailed answers to all the questions in Chapter 12 – Algebraic Expressions provided in NCERT Book which is prescribed for Class 7 in schools.

Book: National Council of Educational Research and Training (NCERT)
Class: 8th Class
Subject: Maths
Chapter: Chapter 12 – Algebraic Expressions

NCERT Solutions Class 7 Maths Chapter 12 – Free Download PDF

Print Friendly, PDF & Email

NCERT Solutions Class 7 Maths Chapter 12 – Algebraic Expressions

Question 1:

Get the algebraicexpressions in the following cases using variables, constants and arithmetic operations.

(i) Subtraction of z from y.

(ii) One-half of the sum of numbers x and y.

(iii) The number z multiplied by itself.

(iv) One-fourth of the product of numbers p and q.

(v) Numbers x and y both squared and added.

(vi) Number 5 added to three times the product of number m and n.

(vii) Product of numbers y and z subtracted from 10.

(viii)Sum of numbers and b subtracted from their product.

Answer:

(i) y − z

(ii) 

(iii) z2

(iv) 

(v) x2 + y2

(vi) 5 + 3 (mn)

(vii) 10 − yz

(viii) ab − (a + b)

Question 2:

(i) Identify the terms and their factors in the following expressions

Show the terms and factors by tree diagrams.

(a) x − 3 (b) 1 + x + x2 (c) − y3

(d)  (e) − ab + 2b2 − 3a2

(ii) Identify terms and factors in the expressions given below:

(a) − 4x + 5 (b) − 4x + 5y (c) 5+ 3y2

(d)  (e) pq + q

(f) 1.2 ab − 2.4 b + 3.6 (g) 

(h) 0.1p2 + 0.2 q2

Answer:

(i)

(a)

(b)

(c)

(d)

(e)

(ii)

Row

Expression

Terms

Factors

(a)

− 4x + 5

− 4x

5

− 4, x

5

(b)

− 4x + 5y

− 4x

5y

− 4, x

5, y

(c)

5y + 3y2

5y

3y2

5, y

3, yy

(d)

xy + 2x2y2

xy

2x2y2

xy

2, xxyy

(e)

pq q

pq

q

pq

q

(f)

1.2ab − 2.4b + 3.6a

1.2ab

− 2.4b

3.6a

1.2, ab

− 2.4, b

3.6, a

(g)

(h)

0.1p2 + 0.2q2

0.1p2

0.2q2

0.1, pp

0.2, qq

Page No 235:

Question 3:

Identify the numerical coefficients of terms (other than constants) in the following expressions:

(i) 5 − 3t2 (ii) 1 + t2 + t3 (iii) x + 2xy+ 3y

(iv) 100m + 1000n (v) − p2q2 + 7pq (vi) 1.2a + 0.8b

(vii) 3.14 r2 (viii) 2 (b) (ix) 0.1y + 0.01 y2

Answer:

Row

Expression

Terms

Coefficients

(i)

5 − 3t2

− 3t2

− 3

(ii)

1 + t + t2 + t3

t

t2

t3

1

1

1

(iii)

+ 2xy + 3y

x

2xy

3y

1

2

3

(iv)

100m + 1000n

100m

1000n

100

1000

(v)

− p2q2 + 7pq

− p2q2

7pq

− 1

7

(vi)

1.2a +0.8b

1.2a

0.8b

1.2

0.8

(vii)

3.14 r2

3.14 r2

3.14

(viii)

2(l + b)

2l

2b

2

2

(ix)

0.1+ 0.01y2

0.1y

0.01y2

0.1

0.01

Question 4:

(a) Identify terms which contain x and give the coefficient of x.

(i) y2x + y (ii) 13y2− 8yx (iii) x + y + 2

(iv) 5 + zx (v) 1 + x+ xy (vi) 12xy2 + 25

(vii) 7x + xy2

(b) Identify terms which contain y2 and give the coefficient of y2.

(i) 8 − xy2 (ii) 5y2 + 7x (iii) 2x2y −15xy2 + 7y2

Answer:

(a)

Row

Expression

Terms with x

Coefficient of x

(i)

y2x + y

y2x

y2

(ii)

13y2 − 8yx

− 8yx

−8y

(iii)

x + y + 2

x

1

(iv)

5 + z + zx

zx

z

(v)

1 + xy

x

xy

1

y

(vi)

12xy2 + 25

12xy2

12y2

(vii)

7xxy2

7x

xy2

7

y2

(b)

Row

Expression

Terms with y2

Coefficient of y2

(i)

8 − xy2

xy2

− x

(ii)

5y2 + 7x

5y2

5

(iii)

2x2y + 7y2

−15xy2

7y2

−15xy2

7

−15x

Question 5:

Classify into monomials, binomials and trinomials.

(i) 4y − 7z (ii) y2 (iii) x + y − xy

(iv) 100 (v) ab − a − b (vi) 5 − 3t

(vii) 4p2− 4pq2 (viii) 7mn (ix) z2 − 3z + 8

(x) a2 + b2 (xi) z2 + z (xii) 1 + x + x2

Answer:

The monomials, binomials, and trinomials have 1, 2, and 3 unlike terms in it respectively.

(i) 4y − 7z

Binomial

(ii) y2

Monomial

(iii) x + y − xy

Trinomial

(iv) 100

Monomial

(v) ab − a − b

Trinomial

(vi) 5 − 3t

Binomial

(vii) 4p2q − 4pq2

Binomial

(viii) 7mn

Monomial

(ix) z2 − 3z + 8

Trinomial

(x) a2 + b2

Binomial

(xi) z2 + z

Binomial

(xii) 1 + x + x2

Trinomial

Question 6:

State whether a given pair of terms is of like or unlike terms.

(i) 1, 100 (ii)  (iii) − 29x, − 29y

(iv) 14xy, 42yx (v) 4m2p, 4mp2 (vi) 12xz, 12 x2z2

Answer:

The terms which have the same algebraic factors are called like terms. However, when the terms have different algebraic factors, these are called unlike terms.

(i) 1, 100

Like

(ii) − 7x

Like

(iii) −29x, −29y

Unlike

(iv) 14xy, 42yx

Like

(v) 4m2p, 4mp2

Unlike

(vi) 12xz, 12x2z2

Unlike

Question 7:

Identify like terms in the following:

(a) −xy2, − 4yx2, 8x2, 2xy2, 7y, − 11x2, − 100x, −11yx, 20x2y, −6x2y, 2xy,3x

(b) 10pq, 7p, 8q, − p2q2, − 7qp, − 100q, − 23, 12q2p2, − 5p2, 41, 2405p, 78qp, 13p2qqp2, 701p2

Answer:

(a) −xy2, 2xy2

−4yx2, 20x2y

8x2, −11x2, −6x2

7yy

−100x, 3x

−11xy, 2xy

(b) 10pq, −7qp, 78qp

7p, 2405p

8q, −100q

p2q2, 12p2q2

−23, 41

−5p2, 701p2

13p2qqp2

Page No 239:

Question 1:

Simplify combining like terms:

(i) 21b − 32 + 7b − 20b

(ii) − z2 + 13z2 − 5z + 7z3 − 15z

(iii) p − (p − q) − q − (− p)

(iv) 3a − 2b − ab − (a − b + ab) + 3ab + b − a

(v) 5x2y − 5x2 + 3y x2 − 3y2 + x− y+ 8xy2 −3y2

(vi) (3 y+ 5y − 4) − (8y − y2 − 4)

Answer:

(i) 21b − 32 + 7− 20b = 21b + 7− 20b − 32

b (21 + 7 − 20) −32

= 8b − 32

(ii) − z2 + 13z2 − 5z + 7z3 − 15z = 7z3 − z2 + 13z2 − 5z − 15z

= 7z3 + z2 (−1 + 13) + z (−5 − 15)

= 7z3 + 12z2 − 20z

(iii) p − (p − q) − q − (q − p) = p − p + q − q − q + p

− q

(iv) 3a − 2b − ab − (a − b + ab) + 3ba + − a

= 3a − 2b − ab − a + b − ab + 3ab + − a

= 3a − a − a − 2b + b − ab − ab + 3ab

a (3 − 1 − 1) + b (− 2 + 1 + 1) + ab (−1 −1 + 3)

a + ab

(v) 5x2y − 5x2 + 3yx2 − 3y2 + x2 − y2 + 8xy2 − 3y2

= 5x2y + 3yx− 5x2 + x2 − 3y2 − y2 − 3y+ 8xy2

x2(5 + 3) + x2 (−5 + 1) + y2(−3 − 1 − 3) + 8xy2

= 8x2y − 4x2 − 7y2 + 8xy2

(vi) (3y+ 5y − 4) − (8y − y2 − 4)

= 3y2 + 5y − 4 − 8y + y2 + 4

= 3y2 + y2 + 5y − 8y − 4 + 4

y2 (3 + 1) + y (5 − 8) + 4 (1 − 1)

= 4y2 − 3y

Question 2:

Add:

(i) 3mn, − 5mn, 8mn, −4mn

(ii) − 8tz, 3tz − zz − t

(iii) − 7mn + 5, 12mn + 2, 9mn − 8, − 2mn − 3

(iv) a + b − 3, b − a + 3, a − b + 3

(v) 14x + 10y − 12xy − 13, 18 − 7x − 10+ 8xy, 4xy

(vi) 5m − 7n, 3n − 4m + 2, 2m − 3mn − 5

(vii) 4x2y, − 3xy2, − 5xy2, 5x2y

(viii) 3p2q2 − 4pq + 5, − 10p2q2, 15 + 9pq + 7p2q2

(ix) ab − 4a, 4b − ab, 4a − 4b

(x) x− y2 − 1 , y2 − 1 − x2, 1− x2 − y2

Answer:

(i) 3mn + (−5mn) + 8mn + (−4mn) = mn (3 − 5 + 8 − 4)

= 2mn

(ii) (t − 8tz) + (3tz − z) + (z − t) = t − 8tz + 3tz − z + z − t

− t − 8tz + 3tz − z + z

t (1 − 1) + tz (− 8 + 3) + z (− 1 + 1)

= −5tz

(iii) (− 7mn + 5) + (12mn + 2) + (9mn − 8) + (− 2mn − 3)

= − 7mn + 5 + 12mn + 2 + 9mn − 8 − 2mn − 3

= − 7mn + 12mn + 9mn − 2mn + 5 + 2 − 8 − 3

= mn (− 7 + 12 + 9 − 2) + (5 + 2 − 8 − 3)

= 12mn − 4

(iv) (a + − 3) + (b − a + 3) + (a − b + 3)

a + − 3 + b − a + 3 + a − b + 3

a − a + a + − − 3 + 3 + 3

a (1 − 1 + 1) + b (1 + 1 − 1) + 3 (− 1 + 1 + 1)

a + b + 3

(v) (14+ 10y − 12xy − 13) + (18 − 7x − 10y + 8yx) + 4xy

= 14+ 10y − 12xy − 13 + 18 − 7x − 10y + 8yx + 4xy

= 14− 7x + 10y − 10y − 12xy + 8yx + 4xy − 13 + 18

= x (14 − 7) + (10 − 10) + xy (− 12 + 8 + 4) − 13 + 18

= 7x + 5

(vi) (5m − 7n) + (3n − 4m + 2) + (2m − 3mn − 5)

= 5m − 7n + 3n − 4m + 2 + 2m − 3mn − 5

= 5m − 4m + 2m − 7n + 3n − 3mn + 2 − 5

m (5 − 4 + 2) + n (− 7 + 3) −3mn + 2 − 5

= 3m − 4n − 3mn − 3

(vii) 4x2 − 3xy2 − 5xy2 + 5x2y = 4x2 + 5x2y − 3xy2 − 5xy2

x2 y (4 + 5) + xy2 (− 3 − 5)

= 9x2y − 8xy2

(viii) (3p2q2 − 4pq + 5) + (−10 p2q2) + (15 + 9pq + 7p2q2)

= 3p2q2 − 4pq + 5 − 10 p2q2 + 15 + 9pq + 7p2q2

= 3p2q2 − 10 p2q+ 7p2q− 4pq + 9pq + 5 + 15

p2q2 (3 − 10 + 7) + pq (− 4 + 9) + 5 + 15

= 5pq + 20

(ix) (ab − 4a) + (4− ab) + (4a − 4b)

ab − 4a + 4− ab + 4a − 4b

ab − ab − 4+ 4a + 4− 4b

ab (1 − 1) + a (− 4 + 4) + b(4 − 4)

= 0

(x) (x2 − y2 − 1) + (y2 − 1 − x2) + (1 − x2 − y2)

x2 − y2 − 1 + y2 − 1 − x2 + 1 − x2 − y2

x2 − x− x− y2 + y− y− 1 − 1 + 1

x2(1 − 1 − 1) + y2 (−1 + 1 − 1) + (− 1 − 1 + 1)

= − x2 − y2 − 1

Page No 240:

Question 3:

Subtract:

(i) − 5yfrom y2

(ii) 6xy from − 12xy

(iii) (a − b) from (b)

(iv) a (b − 5) from b (5 − a)

(v) − m2 + 5mn from 4m2 − 3mn + 8

(vi) − x2 + 10x − 5 from 5x − 10

(vii) 5a2 − 7ab + 5b2 from 3ab − 2a2 −2b2

(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q− pq

Answer:

(i) y2 − (−5y2) = y2 + 5y2 = 6y2

(ii) − 12xy − (6xy) = −18xy

(iii) (a + b) − (a − b) = a + − a + = 2b

(iv) b (5 − a) − a (b − 5) = 5b − ab − ab + 5a

= 5a + 5b − 2ab

(v) (4m2 − 3mn + 8) − (− m2 + 5mn) = 4m2 − 3mn + 8 + m2 − 5 mn

= 4m2 + m2 − 3mn − 5 mn + 8

= 5m2 − 8mn + 8

(vi) (5x − 10) − (− x2 + 10x − 5) = 5− 10 + x2 − 10x + 5

x2 + 5− 10x − 10 + 5

x2 − 5− 5

(vii) (3ab − 2a2 − 2b2) − (5a2− 7ab + 5b2)

= 3ab − 2a2 − 2b2 − 5a2 + 7ab − 5 b2

= 3ab + 7ab − 2a− 5a2 − 2b2 − 5 b2

= 10ab − 7a2 − 7b2

(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q2 − pq

(5p2 + 3q2 − pq) − (4pq − 5q2− 3p2)

= 5p2 + 3q2 − pq − 4pq + 5q2 + 3p2

= 5p2 + 3p2 + 3q2 + 5q2 − pq − 4pq

= 8p2 + 8q2 − 5pq

Question 4:

(a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?

(b) What should be subtracted from 2+ 8b + 10 to get − 3a + 7b + 16?

Answer:

(a) Let a be the required term.

a + (x2 + y2 + xy) = 2x+ 3xy a = 2x2 + 3xy − (x2 + y2 + xy)

a = 2x2 + 3xy − x2 − y2 − xy

a = 2x2 − x2 − y2 + 3xy − xy

x2 − y2 + 2xy

(b) Let p be the required term.

(2a + 8b + 10) − = − 3a + 7b + 16

p = 2a + 8b + 10 − (− 3a + 7b + 16)

= 2a + 8b + 10 + 3a − 7− 16

= 2a + 3a + 8b − 7b + 10− 16

= 5− 6

Question 5:

What should be taken away from 3x2 − 4y2 + 5xy + 20 to obtain

− x2 − y+ 6xy + 20?

Answer:

Let p be the required term.

(3x2 − 4y2 + 5xy + 20) − p = − x2 − y2 + 6xy + 20

p = (3x2 − 4y2 + 5xy + 20) − (− x2 − y2 + 6xy + 20)

= 3x2 − 4y2 + 5xy + 20 + x2 + y2 − 6xy − 20

= 3x2 + x− 4y2 + y2 + 5xy − 6xy + 20 − 20

= 4x2 − 3y2 − xy

Question 6:

(a) From the sum of 3x − y + 11 and − y − 11, subtract 3x − y − 11.

(b) From the sum of 4 + 3x and 5 − 4x + 2x2, subtract the sum of 3x2 − 5x and − x2 + 2x + 5.

Answer:

(a) (3x − y + 11) + (− y − 11)

= 3x − + 11 − y − 11

= 3x − − y + 11 − 11

= 3x − 2y

(3x − 2y) − (3x − − 11)

= 3x − 2y − 3x + + 11

= 3x − 3x − 2y + + 11

= − y + 11

(b) (4 + 3x) + (5 − 4x + 2x2) = 4 + 3x + 5 − 4x + 2x2

= 3x − 4x + 2x2 + 4 + 5

= − x + 2x2 + 9

(3x2 − 5x) + (− x2 + 2x + 5) = 3x2 − 5x − x2 + 2x + 5

= 3x2 − x− 5x + 2x + 5

= 2x2 − 3x + 5

(− x + 2x2 + 9) − (2x2 − 3x + 5)

= − x + 2x2 + 9 − 2x2 + 3x − 5

= − x + 3x + 2x2 − 2x+ 9 − 5

= 2x + 4

Page No 242:

Question 1:

If m = 2, find the value of:

(i) m − 2 (ii) 3m − 5 (iii) 9 − 5m

(iv) 3m2 − 2m − 7 (v) 

Answer:

(i) m − 2 = 2 − 2 = 0

(ii) 3m − 5 = (3 × 2) − 5 = 6 − 5 = 1

(iii) 9 − 5m = 9 − (5 × 2) = 9 −10 = −1

(iv) 3m2 − 2m − 7 = 3 × (2 × 2) − (2 × 2) − 7

= 12 − 4 − 7 = 1

(v) 

Question 2:

If p = −2, find the value of:

(i) 4p + 7

(ii) −3p2 + 4p + 7

(iii) −2p3 − 3p2 + 4p + 7

Answer:

(i) 4p + 7 = 4 × (−2) + 7 = − 8 + 7 = −1

(ii) − 3p2 + 4p + 7 = −3 (−2) × (−2) + 4 × (−2) + 7

= − 12 − 8 + 7 = −13

(iii) −2p3 − 3p2 + 4p + 7

= −2 (−2) × (−2) × (−2) − 3 (−2) × (−2) + 4 × (−2) + 7

= 16 − 12 − 8 + 7 = 3

Question 3:

Find the value of the following expressions, when x = − 1:

(i) 2x − 7 (ii) − x + 2 (iii) x2 + 2x + 1

(iv) 2x2 − x − 2

Answer:

(i) 2− 7

= 2 × (−1) − 7 = −9

(ii) − + 2 = − (−1) + 2 = 1 + 2 = 3

(iii) x2 + 2x + 1 = (−1) × (−1) + 2 × (−1) + 1

= 1 − 2 + 1 = 0

(iv) 2x2 − x − 2 = 2 (−1) × (−1) − (−1) − 2

= 2 + 1 − 2 = 1

Question 4:

If a = 2, b = − 2, find the value of:

(i) ab2 (ii) a2 + ab + b2 (iii) a2 − b2

Answer:

(i) a2 + b2

= (2)2 + (−2)2 = 4 + 4 = 8

(ii) a2 + ab + b2

= (2 × 2) + 2 × (−2) + (−2) × (−2)

= 4 − 4 + 4 = 4

(iii) a2 − b2

= (2)2 − (−2)2 = 4 − 4 = 0

Question 5:

When a = 0, b = − 1, find the value of the given expressions:

(i) 2a + 2b (ii) 2ab2 + 1

(iii) 2ab + 2ab2 + ab (iv) a2 + ab + 2

Answer:

(i) 2a + 2= 2 × (0) + 2 × (−1) = 0 − 2 = −2

(ii) 2a2 + b2 + 1

= 2 × (0)2 + (−1) × (−1) + 1

= 0 + 1 + 1 = 2

(iii) 2a2+ 2ab2 + ab

= 2 × (0)2 × (−1) + 2 × (0) × (−1) × (−1) + 0 × (−1)

= 0 + 0 + 0 = 0

(iv) a2 + ab + 2

= (0)2 + 0 × (−1) + 2

= 0 + 0 + 2 = 2

Question 6:

Simplify the expressions and find the value if x is equal to 2

(i) x + 7 + 4 (x − 5) (ii) 3 (x + 2) + 5− 7

(iii) 6x + 5 (− 2) (iv) 4 (2x −1) + 3+ 11

Answer:

(i) x + 7 + 4 (x − 5) = x + 7 + 4x − 20

x + 4x + 7 − 20

= 5x − 13

= (5 × 2) − 13

= 10 − 13 = −3

(ii) 3 (x + 2) + 5x − 7 = 3x + 6 + 5x − 7

= 3x + 5x + 6 − 7 = 8x − 1

= (8 × 2) − 1 = 16 − 1 =15

(iii) 6x + 5 (x − 2) = 6x + 5x − 10

= 11x − 10

= (11 × 2) − 10 = 22 − 10 = 12

(iv) 4 (2x − 1) + 3x + 11 = 8x − 4 + 3x + 11

= 11x + 7

= (11 × 2) + 7

= 22 + 7 = 29

Question 7:

Simplify these expressions and find their values if x = 3, a = − 1, b = − 2.

(i) 3x − 5 − x + 9 (ii) 2 − 8x + 4x + 4

(iii) 3a + 5 − 8a + 1 (iv) 10 − 3b − 4 − 5b

(v) 2a − 2b − 4 − 5 + a

Answer:

(i) 3x − 5 − x + 9 = 3x − x − 5 + 9

= 2x + 4 = (2 × 3) + 4 = 10

(ii) 2 − 8+ 4x + 4 = 2 + 4 − 8+ 4x

= 6 − 4= 6 − (4 × 3) = 6 − 12 = −6

(iii) 3a + 5 − 8+ 1 = 3a − 8a + 5 + 1

= − 5+ 6 = −5 × (−1) + 6

= 5 + 6 = 11

(iv) 10 − 3b − 4 − 5b = 10 − 4− 3b − 5b

= 6 − 8b = 6 − 8 × (−2)

= 6 + 16 = 22

(v) 2a − 2b − 4 − 5 + a = 2a + − 2b − 4 − 5

= 3a − 2b − 9s

= 3 × (−1) − 2 (−2) − 9

= − 3 + 4 − 9 = −8

Question 8:

(i) If z = 10, find the value of z3 − 3 (z − 10).

(ii) If p = − 10, find the value of p2 − 2p − 100

Answer:

(i) z3 − 3 (z − 10) = z3 − 3z + 30

= (10 × 10 × 10) − (3 × 10) + 30

= 1000 − 30 + 30 = 1000

(ii) p2 − 2p − 100

= (−10) × (−10) − 2 (−10) − 100

= 100 + 20 − 100 = 20

Question 9:

What should be the value of a if the value of 2x2 + x − a equals to 5, when x = 0?

Answer:

2x2 + x − a = 5, when x = 0

(2 × 0) + 0 − a = 5

0 − a = 5

a = −5

Question 10:

Simplify the expression and find its value when a = 5 and b = −3.

2 (aab) + 3 − ab

Answer:

2 (a2 + ab) + 3 − ab = 2a2 + 2ab + 3 − ab

= 2a2 + 2ab − ab + 3

= 2a2 + ab + 3

= 2 × (5 × 5) + 5 × (−3) + 3

= 50 − 15 + 3 = 38

Page No 246:

Question 1:

Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.

(a)

(b)

(c)

If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern.

How many segments are required to form 5, 10, 100 digits of the kind −

 ,  , .

Answer:

(a) It is given that the number of segments required to form n digits of the kind

 is (5n + 1).

Number of segments required to form 5 digits = (5 × 5 + 1)

= 25 + 1 = 26

Number of segments required to form 10 digits = (5 × 10 + 1)

= 50 + 1 = 51

Number of segments required to form 100 digits = (5 × 100 + 1)

= 500 + 1 = 501

(b) It is given that the number of segments required to form n digits of the kind  is (3n + 1).

Number of segments required to form 5 digits = (3 × 5 + 1)

= 15 + 1 = 16

Number of segments required to form 10 digits = (3 × 10 + 1)

= 30 + 1 = 31

Number of segments required to form 100 digits = (3 × 100 + 1)

= 300 + 1 = 301

(c)It is given that the number of segments required to form n digits of the kind  is (5n + 2).

Number of segments required to form 5 digits = (5 × 5 + 2)

= 25 + 2 = 27

Number of segments required to form 10 digits = (5 × 10 + 2)

= 50 + 2 = 52

Number of segments required to form 100 digits = (5 × 100 + 2)

= 500 + 2 = 502

Page No 247:

Question 2:

Use the given algebraic expression to complete the table of number patterns.

S. No

Expression

Terms

1st

2nd

3rd

4th

5th

10th

100th

(i)

2n − 1

1

3

5

7

9

19

(ii)

3n + 2

2

5

8

11

(iii)

4n + 1

5

9

13

17

(iv)

7n + 20

27

34

41

48

(v)

n2 + 1

2

5

10

17

10, 001

Answer:

The given table can be completed as follows.

S.No.

Expression

Terms

1st

2nd

3rd

4th

5th

10th

100th

(i)

2n − 1

1

3

5

7

9

19

199

(ii)

3n + 2

2

5

8

11

17

32

302

(iii)

4n + 1

5

9

13

17

21

41

401

(iv)

7n + 20

27

34

41

48

55

90

720

(v)

n2 + 1

2

5

10

17

26

101

10,001-

Print Friendly, PDF & Email

Leave a Reply